BSCRS

2004

ABERROMETRY

Bernard Mathys, MID

BSCRS Meeting

 LiègeJanuary 31, 2004

BSCRS

2004

Our goals :

- We want to improve our results
- Not only in terms of VA, but also in terms of quality of vision
- How can we do this?
- Better microkeratomes, new lasers, well-trained surgeons, improvement of post-op treatments,... and new algorithms?

BSCRS

 2004
Algorithm factor

- Improve the treatment itself: -3 of X is not necessarily -3 of \mathbf{Y}
- Personalize treatment
- Improve VA without inducing new higher order aberrations over all physiologic pupil sizes
- Improve quality of vision
- Possibility to help people with thin corneas, large pupils, high ametropia
- Redo on previous unhappy patients

BSCRS

 2004
Pitfalls of Aberrometry

- Understanding aberrometry
- New terminology
- Getting used to the new devices
- Have someone dedicated to the exams
- Perfect position of the patient
- Tracker + iris recognition

BSCRS

2004

Understanding \& Terminology

- Topography measures the cornea (surface of the eye)
- Aberrometry measures surface of the eye + «inside the eye»
- HOW?

BSCRS

2004

Bernard Mathys, MD

BSCRS

 2004

BSCRS

Wavefront analyse

 2004Reconstruction of wavefront by CCD-image \rightarrow Zernike coefficient

CCD-Image

Hartmann=Shack Wavefront-Measurenient

BSCRS

2004

Wave Aberration

BSCRS

 2004
Mave Aberration of at Surface

3 D
2 D

BSCRS

 2004The shape of the wavefront is depicted in Zernike coefficient, each shape describes a deformation

$$
W(x, y)=\sum_{n, m, \pi} A_{n, m}^{\pi} \times Z_{n, m}^{\pi}(x, y)
$$

BSCRS

2004

Point Spread Function (PSF)

- Point Spread Function: is the representation of an optical system of a punctual and distant light source (star in the sky)

BSCRS

Point Spread Function vs. Pupil Size Perfect Eye

BSCRS
 nnna

Point Spread Function vs, Pupil Size Typical Eye

BSCRS

Pointspread Function
Wave
Aberration
Pointspread
Function

Retinal Image

2004

Each eye has dififierent patterns of High

BSCRS

2004

RMIS

RMS (Root Mean Square)

RMS is similar to a Standard Variation against ideal situation.
Ideally 1) all Zernikes are zero or 2) WF is zero / a plane.
RMS is used instead of an average value, because 1) Zernike coefficients and 2) WF both have positive and negative portions.

1) Zernike-RMS
2) WF-RMS

3) Zernike-RMS $=\sqrt{1 / n * \sum\left(a_{i}\right)^{2}}$ where $\mathrm{a}_{\mathrm{i}}=$ Zernike-coefficients

2) WF-RMS :

per definition the average height of WF over full size is zero. WF-RMS: Square the WF-function. The average height of WF ${ }^{2}$ over full size is the WF-RMS.

Area \propto WF-RMS

BSCRS

 2004Zywave Normal Higher Order Aberration Distribution 1/1/2001

BSCRS 2004
 Wavefront Analysis \& Customived Ablations

- Ordinary refraction = correction over the entrance of the pupil
- Wavefiront analysis = correction at each point measured over the pupil
- Tscherning aberrometer measures ingoing optics
- Hartmann-Shack measures outgoing optics

BSCRS

Wavefront maps

- Interpreting is difficult
- Modified by lubrication, cataract, pupil dilation,...
- 2 important factors related to pupil size:
- Sive of the pupil: the more dilated, the more we analyze
- Cycloplegia: the higher order aberrations may change the sphero-cylinder readings after pupillary dilation; eyes with higher values of higher-order aberrations would have lower values of sphere and cylinder readings

